Very nice!

but maybe you should mention that this is for manual brakes only! Power brakes have a brake linkage between the pedal and the booster which effectively lowers the pedal ratio and shortens pedal travel! This means that 100lbs of brake force at the pedal results in only 300-400 lbs at the booster (vs. 700 lbs at the MC with manual brakes). The booster then adds a certain amount of force to that number (depends on booster size and if it's a single or a dual diaphragm)! Now the available brake power is greater than with manual brakes which allows you to use a bigger bore MC and pedal effort is lower than with a manual car.

The formula to calculate booster assist is:

diaphragm area (in square inches) times vacuum (in hg) times 1/2

example for a single 10" booster (radius is 5"):
5*5 * Pi (3.14) = 78.5
78.5 * 18hg vacuum = 1413
1413 * 0.5 = 706.6 lbs assist with a 10" single diaphragm booster

with a dual diaphragm area you just have to double the diaphragm area. e.g. dual 8" = 4" * 4" * Pi (3.14) * 2 = 100.48 square inch total diaphragm area = just 25% more than a single 10"!

IMPORTANT: This is for a booster with 100% efficiency - normally boosters work with about 80-85% efficiency. Just multiply the number you get by 0.8 to get a more realistic number!

Last edited by DGS; 05/18/12 08:52 AM.